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ABSTRACT
) 3537

There is now considerable evlidence for the existence of
an Ilnteraction between the solar wind and the geomagnetic field.
The solar wind 18 a highly ionlzed plesma and as suéh may well
influence the earth's magnetic field. It is this interaction
that we have studied.

We have limlted ourselves to a two dimensional model to
permit an exact solution to be obtained. The plasma wind is
considered a8 ilmpinging upon an arbitrarily oriented two dimen-
8lonal magnetic dipole. We find that the field is compressed
by the plasma and essentlially confined to form s cavity in the
plasma wind. The thickness of the boundary layer within which
the plasma and field interact 1s found to be small. We have
determined the equation of this boundary surface and the extent
to which the field 1s changed by such a confinement.

We have also considered the stability of such a system.

We find that there are certain reglons of instability, but for

the part of the surface facing the wind it is stable.
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INTRODUCTION
Recently a great deal of work has been devoted to the problem of
the Interaction of the solar wind with the earth's magnetic field. The
solsr wind consists of a totally lonized hydrogen plasma continuously
streaming from the sun. The velocity and density 1n the neighborhood

7 5 respectively.

of the earth are approximately 10 cm/sec. and 100 cm
These values have been estimated by Biermann and others by observing the
deflection of comet tails in the solar wind. Further evidence of its
existence 1s the geomagnetic storms accompanying increased solar activity.
The mechanism for this disturbance will be made clear in the work that
follows.

The energy density of this plasma 1s 1/2 va2 = 0.83 x lO-8 ergs/cm5
where N is the number density of the plasma particles and m the proton
mass. If we approximate the earth's fleld by a simple dipole the magnetic
field in the equatorial plane 1s B = O-55(RO/R)3 where Ro is the radlus of
the earth and 0.35 the earth's field in gauss at the equator. The energy
density of the magnetic fleld then is 82 /8y = (.55305/R3)2/8ﬂ. We see
that the energy density of the field and the energy density of the plasma
wind are equal at approximately 9.1 earth's radil. If the plasma wind
is to have any effect on the earth's field 1t should be felt at 9.1
earth's radil and beyond.

There 1s direct experimental evlidence for such an interaction. Rocket

studiesl indicate that the earth's magnetic fleld behaves roughly like a

dipole out to 12-13 earth's radli where it sharply decreases to the field

1 A Radial Rocket Survey of the Distant Geomagnetic Fleld, C.P. Sonett,
D.L. Judge, A.R. Sims, and J.M. Kelso, Space Technology Leboratories Report
T7320,2-13.



of interplanetary space (5 X 10-5 gauss).

We wish to describe the nature of the interactlion between the plas-
me wind and the earth's fleld. In particular we shall show that the wind
compresses the field so that a cavity is formed in the wind. This com-
pression may be seen physlcally from elther macroscopic or microscoplc
models.

First let us consider the macroscopic model. The solar plasma has
a high conductivity. Parkerl has estimated the mean free path to be of
the order of lO6 km. Now a good conductor behaves dlamagnetically.

Any magnetic fleld which exists iInitlally in the conductor will tend to
persist. If the fleld is zero inltlally it will remain zero. This pheno-
menon of dlamagnetism may be explained by Lenz's law. If the magnetic
field does change there will be an induced electrlic field. The induced
currents will flow In such a direction so as to oppose the change in the
field. The greater the conductivity the greater the opposition to change.
Thus 1f we imagine a plasma streamlng toward the dipole from infinity
where the magnetic field 1s zero the magnetic field must remaln zero for
all time in the limit of infinite conductlvity, i.e. the magnetic field
In the plasma mey not change.

We may also envisage this exclusion of the field from the plasma
from a mlicroscoplc pleture. Since the mean free paths are so enormous
a particle description is certainly better sulted to describe the Inter-
action. Charged particles moving in a megnetic fleld themselves create

magnetlc fields., Imagine a uniform magnetic field in the negative half

1 E.N. Parker, Interactlion of the Solar Wind with the Geomagnetic Fleld,
Phys. of Flulds, 1, 171 (1958).
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space y < 0 and zero in the positive half space y > 0. Consider a
particle incident on the fileld-vacuum interface along the y-axis from
y = +». It will be curved by the megnetic field moving in a semicir-
cular path with center of curvature on the positive or negative x-axis
depending on the sign of the charge. In either case the particle will
decrease the field within its orbit (i1.e. within the semicircle) and
increase the field outside. We may now generallze to consider the prob-
lem of a plasma incldent on the interface. For sufficiently large num-
bers of particles the magnetic fleld may be materlally reduced within
the reglon where the partlicles are turning, and increased beyond this
reglon. Thus we may speak of a compression of the megnetic fleld by
the plasma stream. We shall study this problem in more detaill later.

In our particle picture we may describe the interaction as follows.
The plasma perticles move in stralght lines (because of their long mean
free paths), penetrate a short distance into the field, and are then de-
flected out.

A more rigorous justificatlon of these statements will follow in

the next sectlon.

DEPTH OF PENETRATION
The problem to be described now has been consldered by Dungeyl and
2
Rosenbluth . Our reason for including it here is partly for complete-

ness and partly because we feel that an important feature of the problem

1 J.W. Dungey, Cosmlc Electrodynamlcs (Cambridge University Press, New York

1958), Sec. 8.3.

e M. Rosenbluth, in Magnetohydrodynamics, edlted by R. Landshoff (stanford
University Press, Stanford, California, 1957).



has been 1gnored.

We would like to know how far the plasma will penetrate 1nto the
magnetic field. To this end we shall investigate the followling two
dimensional problem. The magnetic fleld 1s constant in the half space
x < 0 and approaches O as x epproaches infinity. The field is every-
where parallel to the z-axls. The plesma is incldent on the field from
X = 4+, We assume that all the particles are moving parallel to the
x~axls before encountering the fleld. We expect the path of the par-
ticles to be curved as they enter the field and be deflected out. The
protons having the greater momentum will penetrate further than the elec-
trons, thereby bullding up & space charge. The electric field of this
space charge will tend to pull the electrons in with the protons. The
paths of the partlcles are roughly described in Fig. 1. We observe that
the particle current is responsible for the decay of the magnetic field
in the x-direction. The discontlinulty in the magnetic fleld between
x =0 and x = » is equal to the total partlcle current In the y-direction.

The solution of this problem 1s determined by a self-consistent
solution of the equations of motions of the particles and Mexwell's equa-
tions. The boundary condlitlons are that B = B0 at x = 0 and B—+ 0 as
X =+ o, The electric field must be 0 at x = O and approach zero as
X >+ o, Let (up(x), vp(x), 0) be the (x,y,z) components of the outgo-
ing protons. From symmetry we see that the veloclty components for the
Incoming protons are(-up,vp,o). The corresponding velocity components
of the electrons are (ue,ve,o) and (-ue, ve,o). Let np(x) and ne(x) be
the number density of the incomlng and outgoing protons and electrons

respectively. The maghetic field 1s represented by a vector potential



having only a y-component A(x), and the electric field by a scalar poten-
tial #(x). The number density and velocity at x = w are N and U.

We may integrate the y-component of the equations of motion

eA el
Vp+—c-—Ve—E—E—O. (1)

The energy equation glves

u 2 + v 2 + ggé = u e + v 2. gEé = U2 . (2)
o) P mp e e my

Particle conservation requires

nu =nu = NU (3)

Maxwell's equations are

2
TR »
dx
and
a4
5 = —Bne(np - ne) . (5)
dx

(The currents and charge densities have been doubled to include both in-
coming and outgoing particles.)

The above system of equations apply in region II only. If the elec-
tron terms are dropped we obtaln the equations appropriate to region I.

It goes without-saying that these equations cannot be solved exactly.
We can however find a valuable first integral. (It is at this point that

we depart from Dungey's analysis.)

10



These s8lix simultaneous equations can be reduced to two simultaneous

equations relating the vector and scalar potentials. They are

i 1

d_eA_B“eZNUA mP + me

2 2

dx c \//;2 e2A2 §2é \J/Ue e2A2 gfé

S22 nm T2 2% m
mec o me
P e
and

2

d—-gs-&teNU - 1

dx

2 2.2
dA _ 8wy 3 é 2  e"A" | 2ef
dx2 = -8x o 92 \//U 2 m Mg EK U -—73+3
mpc mec e

::—ig= 81INUmP§ \/Ug- --—‘é egg \/UE— ;Aé-f-e:le

If we multiply the first equation by -dA/dx and the second by dé/dx

and add them, the right-hand side becomes an exact differentisl:

2
dg d é dA d A _ 2eé
= 5 = 8xNU| m_ — -
ddeQ d.xdx mp

+m_/uz L %f

11



Integrating we obtaln

E2 H2
il 2NU(m.puP + mou_) + constant.

To evaluate the constant we let x -+ ©« where E = H = 0 and up = ue = U.

Therefore
2
g; - g; = 2NU(mpup + meue) - 2NU2(mp + me). (6)

At the interface (x = 0) E= 0, H= H,, and u, = u, = 0. Hence
B2 - l6nNU2(m +m ).
) D e

Thus we have found what magnetic field strength 1s required to hold back
the plasma without obtainling a complete solution to the problem.

We might note that the integral obtained in equation (6) could be
found more simply using the Maxwell stress tensor. Consider the volume
of plasma contained In a perallelpiped of unit cross sectional area. The
face a 18 located & distance x from the plasma-field interface, and the
face b at w., (See Fig. 2.) The net force acting on the plasma in this
volume must equal the time rate of change of the particles within. The
force on face a 1s H2/8n - E2/8ﬂ. The force on face b is zero since the
field vanishes at «». The forces on the remaining four faces cancel by
palrs. We shall equate this force to the time rate of change of the mo-
mentum of the partlcles. 1In the initial configuration the total x-com-
ponent of momentum is zero since there are as meny particles moving to
the right as to the left. The momentum change which occurs in the time

dt will then be equal to the total momentum of the system after a lapse

of time dt.

—a
N



(We have omltted the motion in the y-direction as this would only compli-
cate the plcture and is of no interest in calculating the change in the
x-component of momentum.) Those particles which wefe at the surface &
end moving to the left are at the surface a' after a time dt. Those
moving to the right are located at a" . b' and b" are defined in a simi-
lar way. The change in momentum then is the total momentum of those

particles between a' and b" which were between a and b at time t. There

will be other particles between a' and b" which moved in during the time
dt. These must not be counted. The momentum of the particles between
a" and b' is zero. The momentum of the particles between a' and a" is
-2updtn m u_ and the momentum of those between b' and b" , 2UdtNmpU.

PDPP
We must add simllar expressions for the electrons. Equeting F and dp/dt,

B R

2 2 2
il 2npmpuP +2nmu’” - 2N(m.p + me)U ’

but sincenu =nu = NU
PP ee

E2 H2 2
ol wl 2NU(mpup + meue) - 2NU (m.p + me)
which we see 1s eq. (6).
It 18 not possible to proceed any further with an exact solution.
We would however like to estimate the rate of decay of the magnetic field,
i.e., how far from the vacuum-plasma interface must we go before the mag-
netic field becomes a small fraction of the vacuum field. It will be
important in our subsequent work that this distance is small compered
to the dimensions of the cavity.
Dungey has presented an apprioximate solution to this problem. He

assumes that the electron density is everywhere approximately equal to

13



the proton density. He has Justified the approximation using the full
set of equations (1,2,3,4%,5). In doing so he has overlooked the possi-
bllity of an absolute change separation such as would occur in reglon I.
In this reglon the electron terms must be omitted from the equations and
hence are not to be included in an estimate of the relative densities.

We will first find an upper limit on the thickness of region I and
then verify that Dungey's solutlon i1s valid in region II. Having stud-
led both reglons we may then estimate the thickness of the current
sheath.

We return to the integral we found in eq. (6).

B = H° 4 l6nNU(mpup + meue) - l6nNU2(mp + me). (7)

Now at the interface between region I and II

u =20
e
u <U
H< HO
and X X
o o)
E = 8xe k/1 n, dx >> 8Bne \/‘ N dx = BneNxo ,
0 o}

where Xy 18 the distance between the plasma-vacuum interface and the

interface between I and II. Substituting into eq. (7) we find

2

2
(8:reNx0)2 < E° = B+ l6nNUmpup - 2NU (mp+ me) <

< Ho2 + 16nNU2mp - 16nNU2(mP+ m )

e

2
= 16xNU°m_ .
T My



10.

So that 5
5 m U
X, << _Le (8)
bxe“N
or

x, << 8 meters.
Where 8 m. 18 a large dlstance in laboratory experiments, it is qulte
small in comparison with the dimensions of the cavity, lO7 - lO8 m.

We might obtain a better physical insight into this upper limit on
the charge separation by consldering how much energy 1s avallable in the
plasma stream for charge separation. Let us imagline a block of plasma
of unit cross sectional area and width a moving to the left with a velo-
city U. The plasma block now runs into an army of Maxwell demons who
instantaneously stop all the electrons and allow the protons to pass.

We shall simplify the calculatlon by assuming that the protons move as
a block, and we ask how far this block will move before coming to rest.
When the protons are at rest the energy stored in the electric field
must equal the initiel kinetic energy. If the protons are displaced

a distance Xy (see fig. 3.) from the electrons the electric field is

E = hneNxo.

Equating the fleld energy to the kinetic energy

5 16n2e2N2x02 5
E/&:—T————a=1/2NmPU
so that m U2
X2=
° hﬁNée

which is identical to the upper limlit for the change separation obtalned

15
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in eq. (8). (We have tacitly essumed that b >> xo.) The fact that the
numerical coefficlent i1s the sesme 18 of course fortultous.

Now let us consider reglon II. Here we shell show that Dungey's
solution 1s qulite good. He assumes that the electron and ion charge
distributions are approximately equal. This assumption is to be tested

a posteriori. From eq. (3) we see that

u = u .
e P

The y-components of the electron and proton velocitles are related by

eq. (1)
mv = =-mV
PP e e
80 that val << |ve]. We may therefore neglect the proton current in

eq. (4) so that

:Dl\)

v
d 8K2NU_JE ) (9)

dx e

|

n
[+

If we now eliminate ¢ from eq. (2) and substitute for o and v from

eq. (1) we find that

= mPU ( lO)

neglecting terms of order me/mp. We now solve eq. (10) for u, and eq. (1)

for Ve and substitute in eq. (9) remembering that uP = U,

oA
2 mc
a g - BuiNU e . (11)
dx 5 e2A2
U~ - ———
mmc
ep
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Let
cx,=A/Ao
where
mm 02U2
A 2 _ _e
o 2
e
and
LI
x' = x/xO
where o
x 2 mec
=—T
© 8xNe

Eg. {11) then becomes

2
da _ a
5 =
1]
dx 1 - Cc2

Clearly a £ 1 so we set a = sin 8. Integrating

x' = - tn(tan /%) - 2 cos(8/2) + tn( /2 - 1) + /2
For small 8
x' = - tn 6/4
or
|
e:l"ex
so that
dA -x!
H > dx! » e

The field then will decrease by a factor 1l/e when x' = 1, i.e.

o

m C
e

8nNe

2 500 m.

t]
1]
o

for N = 100 cm-s. This is again much less than the dimensions of the cavity.

17
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We must now Justify the assumptlion made earlier that the electron

and proton densities are approximately equal. We may do this by calcu-

lating
2
g;é = -Bre(n_ - ne).
ax P
Now
m
e 2 2 2
é = B (ue -v, - U )
and from eq. (10)
2.2 2
2 2
u = U - —E—é—E = U2 - U2 A_E = U2 cos29 (12)
mempc AO
Also 2
22 m 2 m
S S IS M N
e 22 m 2 2
m c e A m
e o e
so that
Il'leU2 2 m 2 2
= —g | cos 6 + ;25 sin"e - 1 (13)
e

We observe that if m were to equal mp the potential would be
zero and consequently no charge separation would occur. This 1s to be
expected. If the particles have the same mass they must penetrate to
"equal depths.

Differentiating eq. (13) twice we find

2 2 2
a4 8xNeU sin“@
d2-(mp-me) ‘—m—?—[g-Qcose--co—s-a]

X e

so that

2
(mE- me) sin29
n -n = 2 - 2 cos 6 -
2 cos ©

1%
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We see that the plasma 1s far from neutrality at 6 = n/2, i.e. at the
polnt where u, = 0 (ne = NU/ue -+ o), Although'ne and np differ con-
siderably near x = 0 (8 = x/2) the approximation may still be a good
one. We must go back to our calculation of the field decay and investi-
gate what 1s a reasonable measure of large deviation from neutrality.

In calculating the field from eq. (9) we substituted for u, the
value obtained from eq. (10) for u, assuming that u, = ug. Let us see
how far n, and np must differ before this becomes a poor approximation.

Let n - n = 8. Now
P e

or

P__° <1
n
e
Now
NUN
n, = o U/cos 6
e
since
u = U cos e
e

from eq. (12). So that

n -n (m_ - me)U2 5 5
P__2 (2 cos & - 2 cos“® - sin
n 2
e m,c

m_U° 5
r 2 5 (2 cos @ - cos“@ - 1) < .002 or.2%.

m c
e

8)

19
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This completes our discussion of the rate of decay of the field in
the stream. We have shown that the reglon where the field differs appre-
ciebly from zero i1s much smaller than the dimensions of the cavity. (We
shall, in the future, refer to this region as the current sheath.) Since
the mean free path 1s so large the plasma constituents will behave as
free particles until they reach the cavity boundary where they are reflec-
ted. We shall now consider the problem of the reflection of particles

with an arbltrary angle of incidence.

REFLECTION FROM THE CAVITY BOUNDARY

We wish to show now that 1f the current sheath is small the particles
will be specularly reflected from the sheath. We shall conslder charged
particles Ilncident on a magnetic fleld as above except their velocity com-
ponents at infinity are now (U, V, W). The magnetic and electric fields,
B = B(z) X and E = E(z) z, approach zero as z - w. We shall show that
after reflection the velocity components will be (U, V, -W) so that the
angle of incidence 1s equal to the angle of reflection. (See Fig. k)

The fields may be expressed Iin terms of s vector and scalar potential

A= Ay(z) and ¢ = #(z). The path of the particle is determined by the

conservation laws,

u=7=0U (1h)

vy (15)
, me

Ve r vl %é - Vo o+ W (16)

vhere (u, v, W) are the velocity components at some intermediate point of

the motion. The constants of the motion in egs. (14,15,16) have been

3
)
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evaluated at t = - », We now look at t = + ». Assuming that the field
has sufficient depth that the particle 1s reflected and not transmitted
then z + + o as t + 4+ », Eq. (15) requlres then that v =+ V as t = + o,

Substituting u = U and v = V in eq. (16) and observing that g(w) = O

w2 - W2
80 that
w] = + W
te=oo
'WI = =-W .
t.-:-.-oo

We might generalize this conclusion somewhat to include curved flelds
with the proper symmetry. However, for our purposes it will be sufficient
to requlre that the fleld may be approximated locally by a plane fleld
whose principle gradient 1s perpendicular to the field (i,e. within the
orblt of a particle, the field does not vary appreclable slong the field

lines).

DEFINITION OF THE PROBLEM

Let us now return to the problem of physical interest, a plasma wind
blowing on the magnetic field of a dipole. As we have demonstrated , the
plasma constituents will move in stralght lines up to the cavlty boundary
where they are specularly reflected. The region of interactlon (current
sheath) separates the plasma from the field. Since the sheath thickness
is small we may treat it as a boundary surface separating the two domains.
In the plasma domain we have streaming particles meking elastic collisions

with the boundary and in the fleld domein we have a statlc magnetic field

™D
e
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confined to a cavity by the boundary surface. The equilibrium shape of
the cavlty surface will be determined by a condition of pressure balance.
The magnetic pressure within the cevity must balance the pressure of the
plasma wind from without. We may then formulate our idealized problem

as follows:

VXE:O (17)
everywhere inside the cavity except at the dipole where

B - - M/r3 sin @ o - 2M/r3 cos 6 T

V.B=0 (18)

B =0 (19)
on the surface, and
B2/8ﬁ = ONmUZ cosX (20)

on the éurface. Here X 1s the angle between the normal to the surface and
the direction of the incident wind.

In eq. (17) we neglect all currents within the cavity such as atmos-
pheric currents and currents in the Van Allen belts, or else we lump them
in with the dipole field. The boundary condition (eq. (19)) is imposed
since the fleld 1s zero outslde the cavity and the normal component must
be continuous. Eq. (20) expresses the condition of pressure balance, i.e.
we are looking for a steady state solution.

This problem differs in an essential way from the usual boundary

value problem. If the magnetic field were expressed as the gradlient of =
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scalar fleld, the problem would be determined by finding a scalar solution
to Laplece's equatlion having the appropriate slingularity at the origin and

satlisfying two boundary condltions. Normally one is glven the boundary and

one boundary condition. Here the second boundary condltion must determine
the boundary.

Unfortunately, even with these simplificatlons, the problem is still
much too difficult to handle. The existing theoretlical work on the shape
of the cavity boundary in three dimensions consists entlirely of free hand
drawings. There is one exception. David Beardl has presented an approxi-
mate solution to the problem. The valldity of the approximation is ques-
tionable and there exists no test of 1ts accuracy. We shall present here
the exact solution of two analogous two dimensional problems, namely, the
interaction of a plasma wind with the magnetic field of an infinite line
current and with the field of two lines carrying currents in opposite
directions (i.e. a two dimensional dipole). We do not propose that these
two dimensional problems will approximate the three dimensional problem.
We present these problems firstly because they can be solved exactly;
secondly, they are of interest In themselves, glving us physical insight
into the nature of the interaction between plasmas and flelds; thirdly
they can be approximated experimentally so that the theory may be tested;
and lastly they will serve as a test for approximate theoretical solutions
to the three dimenslonal problem. Regarding this last category, we shall
apply Beard's approximatlion method to the two dimensional problems and

demonstrate expllcitly the wvalldity of the method.

1 David B. Beard, The Interactlon of the Terrestrial Magnetlic Fleld with

the Solar Corpuscular Radlation, J. Geophys. Research, 65, 3559, 1960.

23
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INTERACTION BETWEEN A PLASMA WIND AND THE
FIELD OF AN INFINITE LINE CURRENT
We have developed two methods for the solution of the problem-type
defined by egs. (17,18,19,20). The first, while offering considerable
advantages in algebraic simplicity, is restricted in the class of prob-
lems 1t can handle. In particular it may not be used on the two dimen-
sional dipole. To present this first method we consider a plasma wind
incident on the field of an infinite line current. (See Fig. 5.) The
plasma velocity is everywhere perpendicular to the current. The field

inside the cavity boundary must satisfy Maxwell's equations

-
V+«B=0

everywhere

]

Vx B =0

except at the wire, and

near the wire, where I is the current in the wire.
At the cavity surface we require that B be tangent to the surface,

that 1s,

£le

5 a
=
x
and the magnetic pressure must balance the pressure of the stream, so that
2

2 2
l/8n(Bx + By ) = P, cos®

where
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We now reformulate the problem in complex notation. Since

*
2@%?2l=v-'3’+11vx 3| = o,

B must be a function of z¥* where
B=3B + iB .
x Y
The singularity at the wire requlred that
B - 2Ii/z* as z -+ 0.
To formulate the boundary conditions consider

- -> - -
B¥dz = B - ds + 1|B x ds

.

The imaginary part must be zero (tangency condition). The real part is
1
(8npo)§ cos © ds

from the condition of pressure balance. Since cos 6 = dy/ds we may

state both boundary conditions in the single equation
1
B¥dz = (8xp_)° dy.

Our problem then 1s to find a complex function B such that

B = B(z*) (21)
B+ 2Ii/z*% as z =0 (22)
and _%
B*dz = (&rpo) dy (23)

on the surface.

We now use the unknown field B to generate a conformal mapping.l

Let

w(z) = 1/1B*

1 5.D. Cole and J.H. Huth, Physics of Flulds, 2, 624 (1959).
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where
w=1u+ 1v.
(The choice of the mapping function is determined by the simplicity of

the resulting boundary value problem.) Putting this in eq. (23)
dz = (Bnpo)% dy iw (k)

on the surface. Taking the imaglinary part

1

u = (Bﬂpo)_§ = uO’

a constant. We see that 1n the w plane the problem has been reduced to
one of known boundary and 1s thereby consldersbly simplified.
The other boundary condition contailned in eq. (24) might be obtained

by taking the real part. Instead we proceed by considering the quantity
14z _ 3 dy
waw 1(Bﬁpo) aw

on the surface. But on the surface dw = 1 dv and 1s pure imaginary. There-

fore
Im(l/w dz/dw) = 0

on the surface,-i.e. when w = u, + 1v.

The singularlty condition near the current is that
B -+ 2I1/z*.

Therefore

z = 2Iw

1/w dz/aw = 2I/w as w - O.
These condisions will be satisfied by taking

1/w dz/aw = 21(1/w - 1/vo)



22

where (see Fig. 6)

W =W - 21 .
0 o]

We find then for z

w - 2uo
z = -4T u Ln(—————- .
0 a

The constant of integration a 1s determined by the singularity condition.
et a = -2uo. Then

Z = -tho tn(l - W/Euo) (25)

and aspproaches 2Iw as 1t should.
If we evaluate w in eq. (25) on the surface (v = u, + iv) we deter-

mine the surface

uo + 1iv
5 --1I-Iu.c> Ln(l - ) (26)

N
I

80 that

(u? 4 va)%
x = -bIu_tn —>—u— (27)
8 o oy
o
Y, = tho ten™t v/uo. (28)

which are parametrlc equations for the boundary surface. These results
are plotted in Fig. 7.
Eq. (25), besides glving us the shape of the cavity boundary, can

be inverted to give us also the magnetic field. 8Solving for w

-z /4Tu
W = 2uo <jl - e ° .

But

27
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Therefore -X/tho
e sin y/tho
1
B = - 5
X o -x/4Tu 2 -2x/4Tu
(¢] o 2
(} -e cos y/thé) + e sin y/thO
and
1 - cos y/tho
B = 1
Yy  2u

o -x/4Tu 2 -2x/hIu
(} - e © cos y/th;) + e ° siney/hluo

We observe that B. does not approach zero as y approaches zero but
instead l/ll-uO or % P, - Thus the fleld is increased on the windward
side of the line current and decreased on the leeward side. One might
explaln this phenomenon by imagining that the cavlty boundery has com-
pressed the field lines between the cavity and the line thus strengthen-
ing the fleld. The fleld on the windward side points generally in the

positive y-direction. We expect then that the surface currents on the

boundary will produce a field 1n the y-direction near the line current.

INTERACTION BETWEEN A PLASMA WIND AND THE MAGNETIC
FIELD OF A TWO DIMENSIONAL DIPOLE
This problem is formulaeted in exactly the same way as the previous
problem except that now the singularity i1s that of a dipole instead of
a line current. We take the dipole to be perpendlcular to the plasma
flow. This change alters the problem radlically. It 1s not possible to

use the previous technique here. The reason wlll be made clear shortly.
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We begin again wlth the relevant equations,
VxB=0

everywhere except at the dlpole where

2 2
-
2y op X -y 4
B"2M<2ex —- &
r r
as r—+ 0. Here M is the dipole moment.
-
V+-B=20

everywhere.

The field must be tangent to the cavity surface so that

Ll

B

<L -

B

X
and the magnetic pressure must balance the pressure of the stream,

1 2 2 2
B—XGX +By>= p, cos X

2
P, = 2Nmv .

where

Again we find a considerable simplification by expressing these

conditions in complex notation. The two Maxwell's equatlions become
B = B(z*) (29)
and the two boundary conditions
- -»> -+ - -
* = . = .
B¥dz =B +ds +1 B Xds = (+) ‘/ngo dy (30)
The singularity at the dipole is

B* =+ EE% as z =+ 0. (31)
Z
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The reason for the (+) in eq. (30) can be seen from the geometry of
the field. We have made a rough sketch of this in Figure 8.

If d5 1s a vector tangent to the surface and the sense 1s defined
in the usual way (moving along the surface we keep the internal domain
on our left) we see that B-ds (1.e. the real part of B* dz) is negative
between the two neutral points (N) and positive outside.

The magnetic field reverses direction at the neutral points and is
therefore zero there. Slnce the magnetic pressure 1s zero the particle
pressure, and hence the slope, must also be zero.

It 1s this reversal of sign that prevents us from using the previous
method of attack on thils problem. If we agaln used the field to define
a transformatlion, the transformed boundary shspe would no longer be a
plane. This plane was defined by the condition that u = l/\/BEEZ = U
This condition becomes In the present case u = + ug depending on whether

we are Iinside or outslide of the neutral points and the transformed geometry

would become v

L

v
e

MWANN AN N A NS AN SRS AN Y S SSAAS

Fig. 9.
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The geometry 1s complicated further by the fact that the boundary

lies on a double sheeted Riemeanian surface. (This follows from the fact

that w » z2 as z + 0, so that where an argument of 2x descrlbed the z-
plane an argument of Ly i1s needed to describe the w-plane.)

For these reasons we must develop a new method of solution. In
brief we may describe thls method as follows. We assume there exists a
map?ing w = w(z) which transforms the boundary onto a circle. The boun-
dary conditions then define a set of requirements which this transforma-
tion must satisfy. We may solve these equations for w(z). Then knowing
the transformation we can map the circle in the w-plane back ontoc the

z-plane to find the boundary shape 1n the physical space.

ANALYSIS
We introduce a potential function ¢ such that

ad
B = — . (32)

The conditions required of ¢ are that
¢ = ¢(Z).

This follows from eq. (29). The singularity at the origin requires that

M
¢ - Tz as z =+ 0. (33)

And finally the boundary conditions become

%% dz = (+) VQEEES dy . (34)

We now assume that there exists a complex transformation w = w(z)

which maps the unknown boundary ln the z-plane onto a cirecle of radius



27

a in the w-plane. We further require of the mapping that it be an iden-
tity transformation near the origin, i.e. w—» 2z as z - 0. We shall see
that this added restriction does not overdetermine the problem. There
are many transformations which map the surface onto a circle and of these
we choose that one which wlll preserve as nearly as possible the orliglnal
geometry. If for example w—»iz2 near the origin we would be dealing with
a double sheeted surface.

Our problem has now reduced to finding a function ®(z(w)) = &(w)
such that

(D—»-j—?-:; a8 w-—=>0 (55)

and

as = (+) ,/Sﬂpo dy (36)

on the surface of a clrcle of radius a. It must be recalled that the (-)
in equation (%6) is to be applied at points on the boundary within the
neutral points and the (+) to points outside the neutral points. Now
the transforﬁation will determine where these points are mapped on the
w-plane. We shall place one further restriction on the transformation.
We require that the neutral points are mapped to the top and bottom of
the circle (i.e. § = n/2 and ¢ = -x/2). We have now placed a number of
restrictions on the transformation. It may be that there are too many
and the transformation 1s overdetermined. We shall show that 1t 1s not
by exhibiting a transformation which satisfies all these requlrements.
From eq. (36) we see that Im(d®) = O on the boundary, i.e. on the

circle., This implies that

Im & = constant on the circle. (37)
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We can see this condition physically in this way. Let & = ¢ + 1y.

Then

B¥ = Eé + 1 a4
Since ¢(z) 1s analytic we may set dz = dx so that

I
-3
By=-%¥=géé’

where we have used the Cauchy-Riemann equations. Therefore

or

td
1l

§=BX3X+By3y= V% .
The magnetic field lines then are the family of orthogonal trajectories to
the equlpotential surfaces é = constant. But we know that since ¢ and ¥
are conjugate functlons that ¢ = constant are the famlly of lines orthogo-
nal to ¢ = constant. Therefore the magnetic field lines are coincident
with the famlly of lines ¥ = constant. Now on the cavity surface the mag-
netic field lines must be tangential so that the surface is itself a

field 1ine. Therefore ¥ = Im ¢ = constant on the surface. We shall choose

this constant to be zero.

We shall attempt now to construct a trlal solution for the potential.

Let
M M
@:E-—'W. . (58)
1la

This cholce clearly fulfills the requirement of eq. (35) since w—+ z as

z + 0. It also satisfies eq. (37) since on the circle w = & ei¢ and
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so that Im & = O on the circle.

There remains only to investigate the real part of eq. (36), i.e.
LM -
- = cos¢d¢=+ \/EH); dy.

This equation is readlly integrated,

-2-8in¢ -n<¢g<- n/2
y' = sin é - n/2 < d < n/2
2 - sin ¢ n/2 <'¢ <
where
a /Brnp_

[®)
y': Ty.

We shall find 1t more convenlent to wrlte this equation in this form

2-sin¢

y' = J sind (LI-O)

-2-sing

We wish now to find a function z' = z'(w) such that z' is propor-
tional to w near the origin and whose imaginary part satisfies eq. (40)
on the boundary. This function will define the transformation from the

z-plane to the w-plane.
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We shall comstruct this function plecemeal. Let us break up the
boundary value problem Into two parts

2 - gin ¢
y' o= sin d = 2 0> + sin ¢ -1 1

-2 - s8in ¢ -1 /

Consider the function

It 18 not difficult to show that

Im F 1 0
m =
1

when evaluated on the boundary. (The variables are defined in Fig. 10.)

Also, if
v 2
F.=%1tn -2 +21
2 e v 2
3
then
Im F, = -1 +1

when evaluated on the boundary.

Finally, let
F3 = 1/2(a/w - w/a)

then

F3 = 8in ¢

on the circle.

(e
@
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Let us now evaluate the imaginary part of

F5F2 + 2Fl + real constant

on the boundary. We see that it is Just y'. (The addition of a real

constant will not affect this result.) We therefore set

W W

2
v
i ,8 _w 2 1l 1 2
z'=2—“(;-;)(tn;—é—+2xi> +“ln 5 5 +n, . (41)
3 23

We have chosen the constant so that z' -+ 0 as w -+ 0. In particular

, . bw
z' > —
ne
as w—+ 0, or

zZ > W as w-= 0.

Now we assumed that z - w a8 w + 0. We therefore choose the radius a

so that the coefficlent of w is one, {i.e.

8% = ———— (42)
The real part of eq. (41) evaluated on the boundary is
1 (1 + cos é[2 2.1 l - sin
U £, 4
x' =2 in c032¢ + - + o 8in ¢ tn mﬁ (43)

Eqs. (39) and (43) are parametric equation for the cavity boundary.

This has been plotted in Fig. 12.
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There are several interesting features of this shape. First we
notice that the neutral points lie to the windward side of the dipole.

We belleve that this result may be carried over to the three dimensional
Pproblem. We have considered several simplified cavity shapes and in all
cases the neutral points lay on the side of greatest confinement. As

8 simple example consider a dipole field confined by two planes intersecting
at right angles as shown in Fig. 13. We wish to show that the neutral
Points lie to the right of the dipole. The boundary conditions are that
the magnetic field must be everywhere tangential to the surface. This
condition is satisfied by placing three image dipoles as indicated in the
figure. If these are two dimensional dipoles the field lines are circles.
There 1s one field line which is common to all four dipoles and this is
the circle with center at the right angle. It is clear that the field

is zero 8t the two points where the circle intersects the planes. These
are the neutral points and again they lile on that side of the dipole

where the field confined by the planes the neutral points would be altered
slightly but would still lie to the right of the dipole.

Another interesting feature is the distance from the nose of the
cavity to the dipole, 1.35 ,/2M/.,/EFO . This distance is often estimated
by locating that point on the earth-sun line where the energy density of
the magnetic field of the dipole in free space would equal the energy
density of the plasma wind. Where the two energles are comparable we
expect that the plasma will interact strongly with the fileld. We equate

then
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with

and find for the cut off distance

r= l.hl\/ZM/\/Bxpo .

We see that the estimate 1s good to within 5%.

The magnetic field within the cavity may be determined from
eqs. (32,38,41). It is of particular interest to investigate tle field
near the dipole. We find that at the commencement of a magnetic storm
(i.e. at a time of increased solar activity) the magnetic field at the
surface of the earth at latitudes below the auroral zone is increased.
We shall now show that the magnetic field due to the currents in the
current sheath of the cavity boundary will enhance the field of the
dipole in the equitorial zone.

If we expand eq. (41) in a power series we find

waol¥X [ lw
Z = 58. 5a2 e .

2 3
lz 1z
W=z+3a-932.

Now
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and

We see that we have a constant field superimposed on the dirole near the
origin. This field is
By = -2M —ZE
Qs

such a field will enhance the field in the equitorial region and diminish
the field at the poles (see Fig. 1k4).

We should point out here that we have neglected thé temperature of
the plasma wind. Certainly this assumption is valid when the slcpe of
the cavity wall is far from zero. The pressure of the wind on the boundary
is determined by the normal component of the plasma velocity. When the
slope 1s small the normal component of the velocity of mass flow may be
comparable with the thermal velocities. We expect then that the leeward
slde of the cavity boundary should be pinched down when the thermal pressure

becomes comparable with the magnetic pressure.

ARBITRARY ANGLE OF INCIDENCE
Certainly the earth's dipole is not in general perpendicular to
the solar wind. It 1s of Interest therefore to investigate the effect

of orientation on the cavity surface.
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We might also mention at this point that the problem discussed
in the preceding section has been solved independently by Dungeyl.
Our solutions agree. The methods are however different. Dungey points
out that his method cannot be used except for the particular symmetry of
perpendicular incidence. There is one other orientation which possesses
& similar symmetry; the dipole pointing directly into the wind. But even
here his method 1s not adequate to handle the problem. We shall show now
that by using the technique developed in the previous section that we may
solve the problem for arbitrary orientation.

We assume that the dipole makes an angle o with the vertical. The

procedure 1is exactly as before. The magnetic field near the origin

-ia
omie”t

B » T

2
Z

so that
-ia

¢ - iz

The boundary condition on ¢ is that

d® = : .,/8@0 d.y

on the surface. Again we essume thet there exists a transformation
w = w(z) that maps the cavity surface onto a cirecle of radius a. We

also require that the domain close to the dipole 1s not distorted, i.e.

W Z as z—=+0

1 J. W. Dungey, Penn. State Univ., Scientific Report No. 135, July 1960.
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We take as 8 trisl solution

o - gM e-ia . eiaw
T w a2

This satlsfles the required singularity condition near the dipole and

the imsginary part of the boundary condition since

o = :§M sin(g + @)

on the surface. It 1s clear that such a choice for the potential requires

that the neutral points map onto the points ¢ = % -acand ¢ = - % - a,

since at these points %% is zero, so that the field is zero. (see Fig. 15)

Now the real part of the boundary condition is

y = + ——— sin(¢ + a) + const.

on the surface. We choose to express this equation in this way

-sin(d+a) + B

v =:sin(¢+a) +C sin(g+a) + A
where we have set
& VB,
Vi Ty Y
Now since y' is continuous at N and N!
B=A+2 and C=A-2
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so that
-sin(d+a) + A + 2

y' = sin(g+a) + A

-sin(d+a) + A -2

We cannot determine A except to say that A = O when @ = O and A = 1
when @ = n/2. We shall leave A arbitrary and determine it later from
the condition that z - w as w » 0.

Also it is nbt clear where the point x-= - will map on the circle.
It 1s obvious that when a = 0 or x/2, x = ~» will map onto ¢ = x. We
shall assume that this 1s true of all dipole orientations. We shall
show that thils assumption 1s compatible with the requirement of the
transformation. We might instead leave it arbitrary, letting x = -«
map onto ¢ = x - B. We suspect that the condition at the origin would
become

2z » welP

so that B = 0. However this would complicate the analysis considerably
and in as much as a sclution exists for B = O we may infer from the

uniqueness of the solution that B must be zero.

We then solve this boundary value problem for y as before and find

18 -la W ia wi
z' = — = - X n — + in
n \ 4 2 W
a 2
2

w
. 2la + 2 in —2 + 1A +c .
T E4 LS

that

(4h)
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where w,, W, and Wy are defined in Fig. 16.

Expandi 4 about the origln we find

hbw 2 2«

z!' > — - = — + 1A+ ¢C
na 1o 7
so that A = -2a and ¢ = = . Then
i 2
Lm . 16M
z = ———— z! » ———— w

a1/8ﬂpo ﬁ&e 8xp0

so0 that

as before.
Evaluating eq. (44) on the circle we find the parametric equations

for the cavity boundary,

X v (1 cos{ g+ Jl+cos
3 X3 = ~(1 - sin(g+a)) tn ( T55F +<x> +in <1+sin +on> +1

and

-sin(d+a) + 2 - ?—j:

Yo = _ .5 _ 2a
8 sin(g+a) - 2 ~ sin(d4a) - E%
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When o = O these equations reduce to egs. (39) and (43) as they must.
We have plotted these equations in Figs. 17 and 18 for a = 370 and

o = 90°.

AN APPROXIMATION METHOD

Recently Beardl has presented an approximate solution to the
problem of the Interaction between the scalar wind and the earth's
dipole field. As a test of the method we shall apply it to our two
dimensional problem and compare it with the above solution.

The essential feature of Beard's method is the way in which he
approximates the fleld. Imagine a plane surface brought in from
infinity compressing the field in front of it. (see Fig. 19) This
problem is easily solved by placing an image dipole at 0'. If the
plane is Inclined at an angle o with the dipole at O then the image
dipole at 0' is inclined at an angle 2a. It 1s cleér that the resultént
magnetic field at the plane 1s Jjust twice the tangential component of
a single dipole.

Beard assumes that this will be approximately true for a curved

surface as well. The dipole field is

Op. cit.
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(The geometry i1s defined in Fig. 20.) The tangential component of the

field then is

2% cos (¥ + ©)
r

The pressure balance coundition at the boundary is

where

so that

2
EE = cos2X
x = Po
— LM
B =+ cos(V + 0)

r

cos X = cos(® - ¥) = F LM COS(¢7+ 9)

8npor

(45)

The upper sign is to be applied outside the nodal points and the lower

within.

Let

so that eq. (45) becomes

rde 2 r

cos © + sin © ldr Lill (Eos © - sin © ]
r

ar
e
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where r 1is now measured in units of ro. We have made use of the fact

that

I

d
de

H |+

tan\l!_-.

Between the nodal points the solution is

and outside the nodal points

r sine=2 - sin 8 .
r

This boundary has been plotted in Fig. 12.

It is interesting to note that if there were equal plasma winds
streaming from the right and left the approximate solution would be a
circle of radius r=l1. This is also the exact solution. (The reason
for the agreement is that the field of a two dimensional dipole confined
to a cylinder has a magnitude on the surface which is twice the tangential
component of the dipole alone. This 1s Just Beard's assumption.) If
the wind from the left is cut off, the magnetic field will expand into
this region and the magnetic pressure on the right will drop. The
cavity surface on the right will therefore fall toward the dipole and
reach equilibrium at the configuration given by the exact boundary

plotted in Fig. 12.
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STABILITY
The stablility of the cavity surface is a very important question
and also & very difficult one. If one is to make any progress at all with
the analysis one 1s forced to make some rather drastic assumptions.
Considerable effort has been devoted to problems of stability.
Before proceeding with the speclal features of our problem we shall
describe an important stability requirement for thermal plasmas
confined by & magnetic field. (In our problem there is a net mass
flow in the plasma wind. We are now considering a plasma at rest.)
This problem has been investigated by Kruskal and Schwarzschildl,

Rosenbluthg, Grad3

and many others. One common feature of these
treatments 1s that the surface is stable when the center of curvature
of the boundary lies in the magnetic field and unstable when it lies
in the plasma. We may give qualitative evidence for this conclusion
in this way. We consider first the case where the center of

curvature lies in the plasma. (see Fig. 21) The magnetic fileld is
directed into the page. In the equilibrium configuration (solid line)
the magnetic pressure Just balances the plasma pressure, l.e.

B2/8ﬁ = p. The magnetic field increases as we approach the boundary.
Thus if the boundary is perturbed as indicated by the dotted line the

field at b will Increase and the field at & decrease. If we adjust

the deformation so that the plasma volume 1s kept constant the plasma

1 M. Druskel and M. Schwarzschild, Proc. Roy. Soc. A223, 348, 1954.
2 M. N. Rosenbluth and C. L. Longmire, Annals of Phys. 1, 120, 1957.

> H. Grad, 24 Geneva Conf., 31:190.
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pressure will remain the same. It is clear then that the perturbation
will grow. Let us now conslder the other case (Fig. 22). The field
now increases as we move away from the boundary so that in the perturbed
state the field pressure 1s increased at a and decreased at b. Thus

the surface is stable.

Since it is the latter case that prevaills in our problem we might
expect the surface to be stable. There 1s however a difference. Our
plasms is a wind and not statlonary. Further the mean free paths are
too long to apply the continuum plasma equations. Also the magnetic
field is itself imbedded in a plasma. (The earth's atmosphere is
certainly highly ionized at 9 earth's radii.)

Parkerl has considered the stability of the interface between the
solar wind and the earth's fleld and concludes that i1t is everywhere
unstable. We do not feel that this conclusion necessarily follows
from his analysis. We shall conclude now with a more detailed consider-
ation of Parker's model.

The cavity surface is assumed to be locally plane with & plasma
stream incident on it at an angle eo. See Fig. 23. This system is
assumed to be in equilibrium with the magnetic pressure of the wind.
The magnetic field below the interface is immersed in an infinitely
conducting, incompressible, invisid plasma. It is further assumed that
this plasma has a scalar pressure and scalar conductivity. The surface

is now perturbed by a traveling wave. The equation of the surface is

Op. cit.
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z = n(y,t) = Aei(Wt+ky). The eguations of motion together with the
boundary conditions determine a dispersion relation w = w(k). If &
solution exists for w complex the surface will be unstable if Im

is negative since ei“’t will now grow exponentially. Parker states

that "the field density B remains uniform”" under such a perturbation.
This would be true only if the field is directed into the page. Although
such a relative orlentation of field lines and wind direction does occur
in the geomagnetic problem (in the equitorial plane) it does not occur in
our two dimensional problem. However, even 1ln the equitorisl plane of
the geomagnétic field, we would suspect that the curvature of the boundary
would have a considerable stabilizing influence.

We shall show now that even if one accepts Parker's model the cavity
surface surrounding the two dimensional dipole will for the most part be
stable. We shall show that there 1s & critical angle of incidence above
which the surface is stable and below which the surface is unstable.

Because the magnetic field in our two dimensional problem lies in
the plane of incldence of the streaming plasma particles we must
generalize the gecometry considered by Parker. In his analysis the field
is perpendicular to the plane of incidence. We shall investigate the
following problem. (see Fig. 23) The equilibrium boundary lies in the
Xx-y plane. The incident plasms particles have polar angles 90, ¢0.
We assume that the surface is perturbed by a traveling wave moving in
the ;y-direction. The equation of the perturbed surface is z = n(y,t).

We shall first consider the case where the magnetic field is perpendicular

to the direction of propagation (in the x-direction) and secondly parallel
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to the direction of propagetion (y-direction).

Parker has assumed that the plasms beneath the boundary is
incompressible, invisid, and infinitely conducting. In the unperturbed
state u = 0, p = b, and B = Bo' In the perturbed state we assume that
all of these quantities differ only slightly from their equilibrium values.
Let the increments be denoted by u, dp, and 5B. We shall also find it

—

convenient to introduce a displacement vector'g such that u = %% .

The equations that apply in such a plasms arel

b %% = -V + ﬁ; (XB)xB

OB =
Va =0
VB =0

where p is the plasma density, E the fluld velocity, p the plasma pressure
and d/dt the mobile operator %% +'3-V. Neglecting terms of second order

the plasma equations beccme

2y
o 3_52- - -Usp + l%: (W%8B) x B (46)
at
) gﬁ = Vx(_g’xﬁo) ‘ (47)
v.E = 0 (18)
V.8B = 0

1s. Chandrasekhar, Plasms Physics (University of Chicago Press, 1960).
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Expanding eq. (47) we find that
58 = (B, 9T - B(v1) = (B .0)E (49)
Since BO has only s x-~component

- a—g
5B = Bo =

But =% (y,z,t) so that

-

8B =0

The magnetic field 1s unchanged to first order.

It follows then from eq. (46) by taking the curl of both sides that

VX—§,=O

We see then that the fluid motion is irrotational. We may therefore
represent the fluid motion by a scalar potential such that ; = =R,

Eq; (45) becomes

-o = -Wp
Integrating

b = &p. (50)

Also since the motion is Incompressible

V2® =0 . (51)

o) |
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Before one can complete the solution of egs. (50) and (51) for the
plasma motion one must specify the boundary condlitions. The boundary
in our problem 1s a free boundary and is determined by the condition
that the pressure on the boundary from the plasmse wind must balance
the pressure of the plasma below. (The pressure from the plasma below
the boundary is in part due to the particle pressure and in part due
to the magnetic field pressure.) We must now investigate the effect
of the perturbation on the plasma wind pressure.

We consider a small segment of the perturbed boundary as 1llustrated
in Fig. 24. The normal to the perturbed surface mskes an angle a(y,t)
with the z-axis. We assume that o is small. Let U be the normal
component of the velocity of the surface. Parker points out that in
the local frame of reference moving with the fluld the electric field will
vanish so that in this frame the particles are specularly reflected.

The pressure then of this moving surface will be

)
D = E‘Mm(Vn-U)

where Vn is the normal component of the particle velocity and so
Vn - U 1s the velocity relative to the surface. The change in pressure

then is
bp = p-p_ = 2Nm{3v —u)e-vﬂ ® bV (V -V )-V \ﬂ
o n n n'‘n n n
o) c 0 (o]

to first order 1n small quantities. Vn is the normal veloclty component
o
to the unperturbed surface. The change in the wind pressure 1s then

52
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Bp = thV[? cos @ sin € sin do sin o + U cos GéJ

and since the magnetic pressure does not change this must equal the
change in the plasma pressure below the boundary as given by eq. (50).

We now let

3 i(wt+ky )+kz
op = Al e
o = A ei(wt+ky)+kz
2
and
i(wt+k
1(y,t) = Ay e (wt+ky)

The z-dependence ekz has been choosen so that V2¢ = 0. The three
constants are determined by two boundary conditions and the equation of
motion of the fluid. The two boundary conditions are that the pressure
below the surface must equal the pressure above and that the boundary

must move with the fluid, i.e.

gg__acb
t~ " 2z
on the surface. The equation of motion (eq. (49)) gives

Al/p =14,

o3
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and the boundary conditions become

lwA, = -kA, and PA, = thvg{Eik sin 6 cos 6_ sin ¢o A

3 2 3

(52)

k cos 90
]

where we have used the fact that

The determinant of the coefficients must be zero so that

2 2
107 + vk cos & w & L s8in 6 cos & sind =0
€ 0 o o )

where we have set the ratio of the densities p/NM = €. Solving for

iw we find

0= - 2K o5 6 |1 F - w/‘{ﬁ + €© tan sin2¢ +1
€ o VE (o] (o]

¥ —\-/i—_ -\/,/1 + &2 tanzeo sineg{o -1
2

We see that iw will have a positive real part unless

€ tan Go sin do =0

o1
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or

cos & =0
o)

So that the surface wave will grow except when

e{
° x/2

4 =

o}

or

7t
Fortunately-do = 0 or n in both our two dimensional problems, so that
the surface is stable with respect to this mode.
Let us now turn to the mode which propagates along the magnetic
field lines. We therefore take the field to be B = Bo§. The change

in the magnetic field 8B is no longer zero. From eq. (49)

5_2’8 = (—é -V)—g’ =B %5; (YJZ:t)

KNow

and
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so that

v 2 3
x [(%oB) x B)] = B, . (W)
" .

But from eq. (45) this is also equal to pVxE and so

1

52 (VxE) = oV x E
ix By 3 (B = oV x &

If we again assume that the disturbance is a traveling wave

>° 2
__2. = -k
dy

and
£ _ 2
at2

so that

B 2
W (%) = 12 25(vxE)

We see then that either

e
|

5

or

(53)
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Eq. (53) is Just the dispersion relation for an Alfven wave. If
such & solution exists, 1.e. if we can satisfy the boundary conditions
with such a mode, i1t will be stable since w is real. As we are looking
for possible unstable modes we shall teke V x E = 0, s0 that we are again
dealing with irrotational flow. The situatlion is then as before except
that (B2 - Boe)/Bn, the change in the magnetic pressure, is not zero.

Here

— -~ a§ A agZ'\
8B = (B,-V)E = B, g—yx Vg

so that

2 2 > > 2 2 : 2
(B-BO)=B-B__B__5§ =130 ot ==_BO 52®_B023A2
8x b 7 kg §§X hxiw hyiw By2 T hrdw

In the equation of pressure balance we must now add a change in magnetic

pressure so that eq. (51) becomes

2.2

BO k o k2 kA2
Al + e A = 4 Nmv [%in 6, cos 6_ sin do o A, - cos eé}

Eliminating the A's and solving for w we find

iw = - ESE cos GOE ¥ -:/@_'E Q/\/L&xe +1 + 1V ../l+x2 -l>
> :
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where

£

x = l-¢

tan 6 sin ¢
o) o}
The real part of iw 1s positive, and hence the surface is unstable

when

3(1-6 5
5 1+x +1 > 1

or when

2
tan eo[sin ¢ol > —

Je

In our problem do = ﬂ/2 so that instability occurs when GO is greater

than the critical angle (90)c where

tan (6), = 2/+/¢

We might say then that for all angles less than (Go)c the surface will
be stable and for all angles greater than (90)c the surface will be
stable or unstable depending on the stabilizing influence of the
curvature of the surface which has been neglected.

Unfortunately there is no reliable estimates for the plasma density
as far out as 9 earth's radii. We would suspect however that the

density is quite low so that ¢ is small and the critical angle ~ 900.

o8
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On the basis of the above calculatlon we might draw some tentative
conclusions concerning the stability of the surface surrounding the
earth's dipole field. 1In the azimuthal plane passing through the sun
the surface will be stable over a wide range. In the equitorial plane
however we feel that the stability gquestion can not be answered by
the above analysis. The curvature of the surface will exert a

stabilizing influence which should not be neglected.

SUMMARY

We have shown that a plasme incident on the magnetic field of
an infinite line current or a two dimensional dipole will confine
the field so that it forms a cavity in the wind. The plasms particles
move in straight lines (assuming long mean free paths) and penetrate
a short distance into the fileld to form a current sheath within which
they are deflected out of the field. We have shown that the thickness
of this sheath 1is small compared to the dimensions of the cavity.

In the steady state the particles will be specularly reflected
from the surface. They will therefore exert a pressure on the surface
which 1s proportional to the square of the normal velocity component.
The cavity boundary is determined then by the condition that the
magnetic pressure from within the cavity balance the particle pressure
from without. We have calculated the shape of this boundary separating
the plasma wind from the magnetic field of an infinite line current and
a two dimensional dipole. The analysis also determines the magnetic

field within the cavity.
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The cavity boundary has been shown to be stable except for those
regions where the cavity wall 1s almost parallel to the plasma wind

direction.
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Fig. 1 Particle trajectories in the magnetic field,
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Fig. 5 Flow of plasma past a line current.
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Fig. 10 Dipole cavity boundary mapped onto
a circle. The dotted lines are

branch cuts.
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Fig. 13 Dipole field confined by two infinite

planes intersecting at right angles.
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The effect of the field due to the current
sheath (B) will be to increase the dipole
fleld on the equator and decrease it at

the poles.
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15 Cavity boundary transformed to a cilrcle.
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Fig. 16

Definition of polar vectors used in

Eq. (4). The dotted lines are branch

cuts. P, varies between - o and +d -7,
fz_ between -y and 7 - and% between

-w/2 and +r/2.
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Flg. 19 Dipole field confined by an infinite plane.
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Fig. 20 Segment of cavity boundary. n is a unit vector

normal to the surface.



Fig. 21. Perturbation of equilibrium boundary surface
when the center of curviture lles in the plasma

domain.

Plaswa

Fig. 22 Perturbation of equilibrium boundary surface
when the center of curviture lies Iin the fileld

domain.
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Fig. 23 Plasma wind blowing on a surface wave

propagating in the y-directlon.
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Fig. 24

.

A
Perturbed element of boundary surface. n 1is
a unit vector normal to the perturbed surface
and ngy a unit vector normal to the unperturbed
surface.? 1s the displacement of the perturbed

surface element from the unperturbed surface.



